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Yb(fod)3—Promoted Ene Reaction of Aldehydes With Vinyl
Ethers
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ABSTRACT: Catalytic amounts of Yb(fod); catalyze a bimolecular ene-like reaction between ordinary aldehydes and
vinyl ethers, in which the oxygen hfwmtwualuy is located at the central carbon of an allylic system. These reactions
proceed at room temperature in high yie

The synthetic possibilities offered by the ene reaction between carbonyl compounds and olefins have been
amply recognized.2 Intramolecular variants of such processes may be carried out in a truly catalytic mode,3 but
bimolecular reactions normally require suprastoichiometric amounts of Lewis acids, unless very reactive
aldehydes are used.# We now report that traces of Yb(fod)s (0.5 mol %),5 catalyze a bimolecular ene-like
reaction between ordinary aldehydes and vinyl ethers in which the oxygen functionality is located at the central
carbon of an allylic system, e.g.:2-methoxypropene. The primary ene products, alcohols 3, undergo in situ
reaction with excess vinyl ether, providing derivatives 4 directly (Scheme 1). Aromatic aldehydes react
conveniently as solutions in excess ether (procedure A), while enolizable aldehydes react best in the presence of
cosolvents such as CH,Cl, (procedure B).6 The transformation takes place at room temperature under
experimentally simple conditions, and the products emerge consistently in a state of high purity, eliminating
completcly any need for further chromatography or distillation. This appears to be the first example of a truly
catalytic bimolecular ene-like reaction that occurs readily with unactivated aldehydes (Table 1).
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Addition of a small amount of (insoluble) K5COj3 to a reaction mixture prevents formation of 4, and yields
alcohols 3 instead. However, larger amounts of K9CO4 or soluble bases (e.g. Et3N) completely inhibit the ene
process itself. Simiilarly, rigorous purification of solvents, reagents and Yb(fod); retards the reaction
considerably. Catalytic activity is restored in the latter "slow" systems upon addition of traces of acetic acid (1-2
uL),7 and optimal activity is expressed upon addition of silica gel to the reaction mixture.8 These observations
implicate protonic catalysis in the formation of 3. We belicve that the species involved in the catalytic step may be
a temary lanthanide-carboxylic acid-aldehyde complex in which the aldehyde experiences "double activation,"
perhaps as shown in Scheme 2.9 We note that ordinary Brgnsted- or Lewis acids do not promote our reaction;
rather, they polymerize the vinyl ether. In accord with a recent discovery,10 it appears that unique catalytic
properties pertain to hydroxylic units located within the coordination sphere of highly charged metal ions.
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Table I: Reaction of Representative Aldehydes with 2-Methoxypropene.
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The new reaction is not limited to methoxypropene, and indeed, it appears
to have wide scope. Ether § combined with 4-nitrobenzaldehyde to give a
3:1 mixture of 6 and 7. The stereochemistry was assigned after mild
hydrolysis to ketols 8 and 9 on the basis of the coupling constant for the
indicated protons.!1 Reaction of 4-nitrobenzaldehyde with ether 10 gave
only 12-as a 1.5:1 mixture of unassigned diastereomers, at the level of the
OH blocking group. This result is interpreted in terms of rapid proton-
mediated equilibration of 10 with its isomer 11, and faster reaction of the

aldehyde with the less sterically encumbered 11. Finally, reaction of aldehyde 13 with 2 proceeded with a 3:1
sclectivity in favor of the Cram-Felkin diastereomer 14 (96 %). Again, the stereochemistry was assigned after
hydrolysis to ketols 16 and 17, followed by comparison of these with the products of Sakurai reaction of 13

(Scheme 3).12
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g)‘leigmoedmA .83 % (6:7=3:1),90 % (12); (b) 1 N HCl, THF, 95 % (8 - 9), 90 % (16 - 17); (c) 2, procedure B, 96 %

In summary, the transformation of Scheme 1 is experimentally simple, mild, and efficient. Products 4 may
be readily converted into a variety of synthetically useful building blocks. The new reaction thus appears to have
considerable syntlietic potential. A number of synthetic applications are currently under study, and further results
in this arca will be described in due course.13
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